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Approximate two-dimensional equations are constructed which describe the buckling of 
thin nonlinearly elastic plates in case of affine initial deformation. A description of 
semilinear material is adopted [l] which is a generalization of Hooke’s law to the case 
of finite deformations. At first the variational formulation of the problem of bifurcation 
of equilibrium is given for semilinear material. For the case of affine initial deforma- 

tion the mixed variational principle is formulated. From this, two-dimensional equations 

of neutral equilibrium are derived by means of approximation of variation of unknown 
functions with thickness, Using the buckling of a circular plate compressed along the 
contour by uniform pressure as an example, a comparison of results with classical linear 

theory of plate buckling is carried out. For a circular cylinder results are also compared 
with the exact solution obtained by Sensenig. Notations of vector and tensor quantities 

describing the nonlinearly~lasti~ medium are taken from [Xl. 

1, Energy criterion of bifurcation of equllibrlum for 8emilineat 
materiel. The potential energy of an elastic body in the absence of volume forces 
and with “dead” surface loading is written in the form 

Here u is the displacement vector. Integration is performed over the volume v and 
the surface o of the body in the undeformed state. For the “semilinear” material 

W = t/r&r2 + j.Ws 

$1 = Ii (G”“z) - 3, s, = I, (G”) - 21, (G”‘/p) + 3 (1.0 

Here G”is Cauchy’s measure of deformation. TX (Gcr”) is its first invariant, h, and P 

are constants. 
Let us examine an initial deformed state of the body with a radius vector of the point 

of the elastic body R*, and adjacent to this the point given by the vector 

R=R“+qw 
where rl is the small parameter. 

In order to obtain the variational formulation of the problem on bifurcation of the 

equilibrium, it is necessary [Zf to compute the growth increment of potential energy 
when the additional displacement q\i’ is communicated to the points with accuracy to 
terms of second order of smallness 

l2 = II, + @I, + ?,I%, + . . . (II, = l-I (R”)) 

From (1.1) we obtain ~ji’ _ w,, -_ (q - zp) fI (G% _ G==%) + 

+ ‘f2hI12 (G”“’ - G"" ” ) + pIl (G” - Gx”) (1.25 
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Since G” = VR .vRT, then 

GX - G"" = q (TJ7R”.vwT + ‘C7w,vRoT) + q8~w.y7wT 
Referring to equation [l] 

where GAare the principal values of tensor G" ; ek and 65; are basis vectors of principal 

directions of Cauchy’s measure of deformation and of Almansi’s measure of deformation, 
respectively, we have 

I1 (G” - G’“) = 2q JfF ec .vw .e<’ + q2vw. .VwT (1*3) 

For computation of the quantity I, (Gx’i2 - G*“‘A) we represent the tensor GX’/* in 

the form 

Further we write the identity VR *AT= GX’Jz, in which A = e,e,’ is the tensor of 

rotation of principal axes of deformation, and deferentiate it with respect to parameter q 

vw.A= + vR. (A’)T = (Gx”z)* 
We arrive at the identity 

II’ (G"") = VW. aAT +aR.. (A3T 
Using the equation [l] 

(A*)T = ;;“t”;; (er’ek - ek’es) 
s 

(1.4) 

it is easy to prove that VR * - (A’)T sz 0. in fact 

vR. . (A*)T = dG,e,’ (e,‘e, - ek’es) .e, &yJ*& = 

Here 6,, is the Kronecker symbol. In this manner 

fr’ (GX”?j = VW. .:jT = e,:gw.e, 

and further according to (1.4) 

rt**(@“‘) = VW. .(<\.)T E ~~~~~~ (eh..vwSe,’ - e,.Vw=e{) 

Thus we obtain with accuracy to small terms of the second order 

I, (GY”’ - G”“““) 7 qe,~ .ow .edo’ + 

(1.5) 

Substituting (1.3) and (1. 5) into (L.2), we arrive at the following relationship : 

ITI =-: &vwT’. I”pvR” + (hs,” - 2~) A’]} da - $F’.wch 
0: 

2 = I\\[ 
XT) + pc7w. qwT + (1.6) 

I,& 

Here or is the part of the surface on which the external forces are given (on OzW = 0). 
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The following equation of state [l] corresponds to the elastic potential (1.1) : 

D = (As, - 2~) A + 2py7R (4.7) 
where D is the Piola stress tensor. Therefore 11, takes the form 

III = S\iD”. .Vwdz - \~F".wdo 
L . 
v bl 

Applying the easily verifiable identity 

P.mVa=Vm(PT.a)-(VmPT).a 

and integrating by parts, we obtain 

(1.8) 

v 01 
since the initial state of stress will be an equilibrium state and will satisfy the equations 

V. D” = 0 in the volume 71 and n. D” = F" on the surface ol. 
Consequently, the growth increment of potential energy of deformation computed with 

accuracy to small terms of second order of smallness will be a homogeneous quadratic 

functional over the vector w. 

Further we shall demonstrate that the condition of this functional to be stationary, 
is equivalent to differential equations of neutral equilibrium with corresponding boundary 
conditions. 

Let us construct the variation of the functional II, 

6IIs = * 
ISS 

[hVGw* . AaTvw. . AoT + 2pVw. .V6w $ 

+ + ,$oL& V6w - . (eso’ec - e,“‘ez) ec. Vw .et’ + 

“L2p 
k0 

+f $2; J/-(77 
06~. .eaoreko (eg.Vw .eaor - e,. VW .e,“) 1 dz 

8 

Integrating by parts, we further obtain, using (1.8) 

6rIs = s\ PVWT. .A”n.A”.6w + 2pnmVwmdw f 

0’ 

+n 1/G;+ Jfc/c@ 
[ 

“-2p VW. -esO’e,~ (ekoeao’ - esoekO’) 1 1 -6w do - 

- sss v .{hTWT. . A”A” $2pVw + 
hs1” - 2p 

vc + fG? 
VW. . eso’eko (ekoeso’ - 

ZI 
- esoebo’) }. 6wdr 

The requirement 6.& = 0 leads to differential equations of neutral equilibrium and 
boundary conditions [l] 

V*D'= 0 inthevolume u n. D’ = 0 on the surface or 
D.z 2O-Q 

(1.9) 

I/G” i- v/(;ko 
el;O. VW. eBo’ (ekoeso’ - esoeko’) + hA”e,” . VW. eke’ + 2pvw 

(1 .lO) 
We note that w = 6~ = 0 on 02. The converse statement is also apparent, when 

these conditions are satisfied 6)-I, = 0. 

Now. keeping in mind Eq. (1.6). we can write functional IIs in the form 
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SIS 
’ D’. .~w*dz (1 .ll) 

21 
2. The CPIO of afflne initial deformation, In this case all quantities 

relating to the initial deformed state are constant and equations of the neutral equilib- 

rium (1.9) and (1.10) can be simplified. Taking into account that 

es” = esO. A” = A”T. es0 
we rewrite (1.10) as follows: (2.1) 

D” = 
hs1” - 2P 

V/c,o+V-T 
eke *VW’ *es0 (ekoeso - edoe,,.‘) + hEek”. VW’. eke -J- 2pvw’ 

D” = (D’) .A”TI 

Here W’ = W *AoT is the rotated vector of displacement. It is apparent that Eqs. 
(1.9) are equivalent to equations 

v.D” = 0 in v, n *II" = 0 on or (2.2) 

Through transformations analogous to those carried out in [l] we can reduce (2.1) to the 
form D” = T (w’) - 2pE x (C. o’) (2.3) 

where 
T (w’) = AEv - w’ + 2@, E’ = 1/2 (VW’ + VW’~), o’ = l/sV X W’ (2.4) 

C=E+i 
?iSl” - 2p 1 hSl” - 2P 

P ?G30+v-F 
eloelo + - 

P+ W-!-VP 
ezoeso + 

X es”eSo 

In this manner it is shown that Eqs. (2.2) and (2.3) obtained in [1] for the case oftriaxial 

uniform elongation are applicable to any affine transformation, only instead of the actual 

vector of displacement it is necessary to take as w the rotated vector of displacement. 

The functional (1.1) is also represented through the rotated vector w’ 

IT2 = + sss (D”) . . ‘C7w’Tdr 
v 

To avoid cumbersome notation in the following we shall omit the prime above vector 

w and tensor D’. It is agreed that w and D’ will be understood to be w -A”T and 

(D’) .AQT , respectively. 
The growth increment of potential energy DI, can be expressed through components 

of tensor D’. For this purpose the tensor D’ will be represented in a form composed of a 
symmetrical and an antisymmetrical part 

D’=T-Exq 

where q is the vector which goes along with tensor D’. Comparing with (2.3) we obtain 

2pvw=T- -++E-Ex (C-l-q), a=I,(T), Y=~/& 

Then using the equality 
I,(axExb) = - 2a.b 

we arrive at the desired expression 

(D’)..VaTd~=SSS~LT..T--~2+2q.C-l.q1dT 
v v 
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To the variational principle established in Sect. 1, we can give the formulation of a 
mixed principle analogous to the principle of Reissner in the classical theory of elasticity. 
Namely, let us examine the expression 

@= scs [(D’). .vwT- +(T. .T - +sZ + 2q.W.q)] dz (2.5) . 
0 

where @ is the functional over vector w and tensor D’, which are examined as indepen- 

dent functions of the coordinates. The numerical value of @ is equal to &.It is easy 
to check that the requirement of stationarity of this functional leads to equations of 

neutral equilibrium and boundary conditions on or written in components of tensor D’ 
(the comparison includes vectors w which satisfy the condition w = 0 on os)and also 

equations which connect tensor VW with tensor D’ 

V *D = 0 in U, n .D’ = 0 on o1 

2p& = T - + 5E, 2p.I = c-1.q 

3. Derivation of two-dimensional equations of buckling of 
plates. Let us presume that a thin plate is subjected to affine transformation in its 
own plane, accompanied by uniform elongation along the Z-axis. Such an initial defor- 
mation is realized for example in a rectangular plate when its side surfaces are loaded 
by forces located in the plane of the plate and which have a constant intensity along 

each pair of opposing sides. For the described deformation the Z-axis will be the prin- 
cipal axis of deformation, i.e. es0 = es” = i, . In this case the forms of bifurcation 
of plate equilibrium according to (2.2) and (2.3) fall into two independent parts : sym- 
metrical with respect to the mean plane z = 0 , and antisymmetrical. If components 

of displacement along the axes x, y and z are designated by ui, ua and W, then for the 
antisymmetrical, i. e. bending forms, the component w will be an even function of 2, 
and ur and uawill be uneven functions of Z. 

Components i&‘, dss’, d,’ and aas’ of tensor D-will be even functions of Z. The 

remaining components will be uneven functions of Z. 
By a method which is analogous to the derivation of equations in the theory of shells 

from the principle of Reissner in [3], we obtain approximate two-dimensional equations 
which describe the bending forms of bifurcation of the plate from the mixed variational 
principle formulated in Sect. 2. 

For the bending forms of bifurcation of a thin plate let us write the following appro- 
ximation of the vector of displacement w and the tensor D’ as a function of coordinate Z: 

w = wtz + w&, w1 = uIiI + u,i, (3.1) 

Here M is a two-dimensional tensor wl, V,, V, and Vs are two-dimensional vec- 
tors. The component da,’ is neglected because for Z = f l/ah this component is 
equal to 0 ,and furthermore 8,s. ’ 1s an uneven function of z. In‘the approximation adop- 

ted in (3.1) the condition n -D' = 0 for z = _t l/,h is satisfied. The integral mean- 
ing of introduced quantities is determined by the following equations: 

llph ‘lzh 1 ‘rh 

M= 5 d&i&z, 1/2 (VI + V,) = 1 6’&-Iz, Vz = 5 &i,dz (s, k = W 
-‘izh --l/zh -“lh 
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Substituting expressions (3,l) into (B.5). we obtain after transformations and integration 
with respect to z 

QAW = 11 (M), El = I,/% (VWi -+- Vwp), ox = ysv x w1 

Cl = Cseloelo + Cleaoe20 = (e,“e,” +- (?a”elo) w C (I (eloeeo + eaoelo) 

Here s is the mean plane of the plate ; the symbol V is undestood to represent now 
the two-dimensional nabla operator ;&&is the symmetrical part of the tensor M; i;,, C, 
and C;a are the principal components of tensor C. 

Computation of variation 64, and integration by parts gives 

a~=~~~slo,I-lirv.V,-l;,V.V,l+~~~.[-V~NI,+PXqrfVl]~ 
s’ 

f6M,rs ~~~-~~~M~-~~~~E~~ f6qMa [s+-&c-~+qa]+ 

-j- 6V1. [l/zVw, - -!- $& {$ WzV1 -t Vi?) + & V3 + Lg G-l. (l/%VI-V*) + 

+&cpv,tl f6V,. 
1 
w1-1 4g {-&(%V,+ V,H&Vs -t-&-w - 

-+vvl - 
1 

&cl-l * Va)] +- 6V3. [“/zVw, - + {& Vs -I- & (Gj- VI e vzj + 

+&Ct’-V& A[+ VI - y”i W}#b -k 4 [n.M,~6w,-((rrxqlti).6wlf 

-t w * (VI -I- V,) 6%12 (3.2) 

Here Y is the contour which forms the boundary of the mean pIane of the plate ; n is 
the normal to it, From here, using the condition of independence of variation, we arrive 
at the equations of equilibrium 

V *M I- V,, v.(v~+vs)=o (3.3) 

and relationships which connect M, V,, V, and V, with kinematic quantities 

M=~[e,_L &V.wlE, - E,x (C-o,)] 

VI tit 6&h (Es - Cd. Iw + Vwi,.(b - Cd*{% + C,Y”L] (3.4) 

V,=6/61%th[V~o-(Ea-CCI)i_w~-(EsfCl)] 

V3 = 8phVw,~C, .(Ez -+ CJi 
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Different variants of boundary conditions are apparent from the structure of the con- 
tour integral in (3.2). In the absence of an initial state of stress, i. e. for C = 0, rela- 
tionships (3.3) and (3.4) transform into known equations of Reissner’s theory of plates in 
the absence of transverse loading on the plate [4]. Substituting (3.4) into (3.3) we obtain 
equations in displacements describing the buckling of the plate 

V.(E2-Cl)+ wl+ V.(E2 + Cl)-l.(E, +14/6C;1 + C12).Vw,, = 0 (3.5) 

l/da [ (& + -+)vv.w, + qV2w1]= Vw,.(Ez -Cl)+ wl. 

.(Ez +CI) 

4. Example. As a most simple example we shall examine the axisymmetric forms 
of buckling of a circular plate compressed along the contour by a uniformly distributed 
normal pressure. The edge of the plate can freely move along the z -axis but is fixed 
against rotation. 

In the undeformed plate let us introduce cylindrical coordinates r, 8 and z and the 

corresponding basis vectors e,, es, i,. The radius vector of a point after deformation is 

given in the form ii* = pre, + azi3 

From (1.7) we determine the Piola stress tensor corresponding to this deformation 

D” = In (28 + a - 3) - 2~1 E + 2~ [BE2 + ai.&] 

We select a and B from conditions arro = - p1 and aas0 = 0 

I-V 2v 1-t-v 
P=l-- l+v ~1.. a=l+ l+v PI*, PI*=%, O,<P~‘< I._~ 

Here pIis the pressure computed per unit area of the undeformed body. The true pres- 

sure, i.e. the pressure computed per unit area of the deformed body, is equal to 

(4.1) 

It is easy to see that p is a monotone function of pl so that minimum p corresponds 
. . to rmmmum p1 ; according to (2.4) we shall have 

- PII 
l 

c=z 
- Pl’ (1 - 3v)/(l + v) EZ - 1 _ pl. (lpi ,,),(l + v) isis = Cl& + C&is 

In the example under examination the system (3.5) assumes the form 

(1 _ Cl) (uJ+ -y + 1 + ‘;‘;“‘c:’ cl3 (u,oJr + $) = 0 

&&f~) =(I -Ccl)wo’+(l +Cl)u (u=w+e,) 
(4.2) 

The system (4. S) has the following solution: 

u = + Jl(kr), 
A(2 - Cl)h2 

wo = - 24c1 (i _ ,,) Jo (kr) + B 

where 

h2k2 = 
-24C1(1 + C,) (1 - v) 

1 + ‘4/& + Cl" 

548(1-v)p1 t (1 _L?$ p1*j[4_$5pl* _=.$ “,“,;;’ p1.2]-1 

From the boundary condition u = 0 for r = a for the nontrivial solution we arrive 

at the transcendental equation J1 (ka) = 0 . For the critical values of external pressure 
the following equation is obtained 
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Fig. 1 

8 3- 6y -t v2 h2 
-jj- (1 + v)” F Yn” + 

where ‘Yn are zeros of the Bessel function Jr &) = 0. 
In this case the second boundary condition 

e,.(V1 + V3)= 0 for 

is also satisfied. 
In Fig. 1 the curve 1 represents 

El1 = en (y,*) for v = 0.3 of the 

shortening of the plate radius 

the relationship 
critical relative 

The curve 2 corresponds to the exact solution of axisymmetric bifurcation of equilib- 
rium of a circular cylinder compressed on the lateral surface by a uniform pressure. 

This result was obtained in f53. 

The straight line 3 corresponds to the classical linear theory of buckling plates. 
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ON THE CORRECTNESS OF CERTAIN PROBLEMS OF THE 

BORNE ~EORY OF SHEXLS OF NE~ATI~ C~RVA~~ 
PMM Vol. 33, Np4, 1969, pp. 6’76-687 

V. A, SHACHNEV 

~Re~i~~~~~~, 1968) 

The determination of the state of stress and strain of a membrane shell of negative cur- 
vature reduces to the requirement of solving a system of hyperbolic-type equations. The 
boundary value problem for such a system does not always have a solution, and hence, 
such a problem is not generally correct. The following boundary value problem will be 
examined herein for the system of membrane theory equations in the case of shells of 


